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Abstract. Most papers on  methyl group tunnelling use a model in which the motion of a rigid 
rotator is hindered by a potential of threefold symmetry. There are a number of difficulties 
with such a description and, in this paper, the model is replaced by one which describes the 
motion of three protons, which have mutual interactions and which are hindered by an 
external potential. The analysis makes considerable use of symmetry ideas and arrives at 
conclusionswhich are substantially different from thoseof the previousmodel. Acomparison 
of the two models shows that, in the absence of dipolarinteractions, both will have an orbital 
singlet level with spin of 1,  but that the level described as 'E in the rigid-rotator model will 
not occur in the present model and that there will be no corresponding level with fourfold 
degeneracy. Instead there will be two separated orbital singlets, each with spin 4. The 
inclusion of the dipolar interaction splits the quartet into two doublets, so that finally there 
are four separated low-lying energy levels, each being doubly degenerate. 

1. Introduction 

Many papers concerned with the hindered rotation of methyl groups have used a 
Hamiltonian of the form 

(-h2/21)(a2/acp2) + V ( q )  

where the first term describes a free rotor and the second a hindering potential of 
threefold symmetry. It then follows that the low-lying single-particle energy levels 
consist of a singlet and a doublet so that, with three protons, the low-lying many-particle 
states should consist of a spin quartet, labelled 4A and two doubly degenerate spin-4 
states, labelled 2E. The use of such a Hamiltonian is, at first sight, surprising, for the 
protons in a methyl group can hardly be regarded as free, the coordinate q is not usually 
defined, and in most cases the hindering potential does not have threefold symmetry. In 
an attempt to understand why this model is, apparently, so successful, a specific model 
of three protons interacting through a mutual interaction, in the presence of a hindering 
potential, was considered by one of us (Stevens 1983, hereafter referred to as I). It was 
found that a Hamiltonian of the above form could be obtained if cp was identified with 
a specific variable, but even then it was necessary to use different boundary conditions 
for the two types of solution: those with spin4 and those with spin-f. It is also apparent, 
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although it was not stressed, that the description ’E of one of the levels is inappropriate, 
for the eigenstates are not direct products of spin and orbital variables. In parallel with 
this investigation, which was entirely algebraic, Clough and McDonald (1983) carried 
out a numerical study and concluded that, although the E doublet is not split, its long- 
standing symmetry description is incorrect. The same conclusion was reached in I. The 
purpose of this paper is to show that, using general arguments, the doublet can be 
expected to be split, which suggests that both the models were insufficiently general. 

The model to be discussed has similarities to that of I, the main difference being that 
the emphasis will be placed on symmetry considerations. An additional feature will be 
the inclusion of magnetic dipolar interactions between the nuclear spins, which is found 
to produce a splitting of the otherwise degenerate quartet levels and so is of experimental 
interest. 

The Hamiltonian is taken to be 

(-62/2mor;)(a2/aq: + a 2 / a q :  + a ’ / a q , : )  + U ( q ,  - q 2 )  

+ U ( q 2  - q 3 )  + U ( q 3  - V I )  + V(qPl> + V(Cp2) + V(Cp3) 

+ w12 + w23 + w31. (1 1 
It is intended to represent three protons which can move on a circle of radius yo,  with 
the q-variables describing their angular positions on the circle. U ( q  - q2)  describes a 
mutual potential energy between particles 1 and 2, and V ( q  ,) describes the potential 
energy of particle 1 in a hindering potential of no particular symmetry. WI2, which is 
given specifically below, is the dipolar interaction between particles 1 and 2. It takes the 
form 

w , ~  = {~?,p$/d[2 - 2 CO@ 
- 

i [Z \  exp(-iq,) + Z F  exp(iql)][Z: exp(-iq2) + 12 exp(iq2)] 
[2 - 2 cos(q1 - (I3211 

x Z ‘ . I 2 -  i 
After some rearrangement this can be written as 

w12 = {y@k/r3[2  - 2 cos(q 1 - (p2)]3’2}[a(2zyz; - ziz; - Zp;) 
+ I s in (q ,  + q 2 ) ( I i I ;  + ZiZ:) + j cos(q ,  + q2)(1i1; - ri,I;)]. (2) 

As the emphasis throughout is on symmetry it is an important requirement , with identical 
particles, that the Hamiltonian is invariant under their interchanges. It then follows that 
U ( q  - q2)  = U ( q 2  - ql), showing that Uis invariant under reversals of the q-values. 
In the absence of the W interactions no spin variables occur in H ;  so all eigenstates can 
be taken to be eigenstates of total spin (either Z = t o r  Z = I) .  Inclusion of the Wpotentials 
produces a coupling between spins and orbital motion and so reduces the overall 
symmetry. In particular, Wis not invariant under reversal of the q-values, although the 
loss in symmetry can be partially restored by requiring that, on reversal of the q-values, 
Z+(Zx + ily) and ZL(Zx - iZ,) interchange. The potentials V may or may not be invariant 
under reversal of the q-values but, as will emerge, there is little loss in generality if it is 
assumed that the Vare invariant. This will therefore be generally assumed, and the case 
where they are not invariant will be discussed separately. 

Because of the contrast with the rigid-rotator theory it is convenient, at this point, 
to stress that all the symmetry operations are performed on the form of the Hamiltonian. 
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No geometrical types of argument about the shape of the molecule or the effects of 
physically interchanging particles are used. 

Finally it will be assumed that all the potentials contain parameters which, on 
changing their values, alter the potentials without changing their symmetry properties. 
Among the various possibilities will be that of eliminating some particular interaction. 
It can then be argued that, if a given eigenvalue has eigenstates which transform 
irreducibly under the symmetry operations of the appropriate symmetry group of the 
Hamiltonian for a particular choice of parameters, then, on changing the parameters, 
the corresponding eigenvalues and eigenstates may alter, but in such a way that the 
irreducible representation stays unaltered. 

2. The symmetry elements 

To obtain the symmetry group of the Hamiltonian and then its irreducible rep- 
resentations it is first necessary to define some basic symmetry operators. These will now 
be listed, with a(1) denoting one of the I = d spin components of particle 1 and P(1) 
denoting its other component, the axis of quantisation being taken as in the z direction, 
i.e. perpendicular to the plane of the proton triangle. (This is already implied by the 
form of W.) 

Thus the operation C has the following property: 

Similarly, 

and 

It immediately follows that C3 = E = u2 = T4, where E is the unit operator. Also, Tis 
equivalent to i(Z+ + I - )  within I = t ;  so T-l(I+)T = (I+ + I - ) I+(I+ + I-) = I-, and vice 
versa, which shows that the operation on the Hamiltonian by T leaves it invariant, even 
when the dipolar interaction is included. T has the further property that it commutes 
with C and 0 and so with all the elements of the subgroup to which they give rise, which 
is the permutation group on three symbols. Since this group has six elements and three 
classes, it follows that the symmetry group of the Hamiltonian has 24 elements and 12 
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Table 1. Irreducible representations of the group. 

E 2C 3 a  T 2TC 3Tu T 2  2T2C 3T2u T’ 2T’C 3 T 3 u  

r, 1 1 1 1 1  1 1 1  1 1 1  1 
r2 1 1 1 -1 -1 -1 1 1  1 -1 -1 -1 

r4 1 1 1 -i -i  -i -1 -1 -1 1 1 i 
rs 1 1 -1 1 1 -1 1 1  -1 1 1  -1 
r6 1 1 -1 -1 -1 1 1 1  -1 -1 -1 1 
r, 1 1 -1 i i  -i -1 -1 1 -i -i 1 

Ts 1 1 -1 -i -i i -1 -1 1 i I - 1  

r9 2 -1 0 2 -1 0 2 -1 0 2 -1 0 
rlo 2 -1 0 -2 1 0 2 -1 0 -2 1 0 
r,, 2 -1 o 2i -i 0 - 2  1 0 -2i i 0 
r,2 2 -1 0 -2i i 0 -2 1 0 2i -i 0 

r3 1 1 1 i i  i -1 -1 -1 -i -i -i 

classes. Its character table is given in table 1. An important requirement is that any state 
of physical significance must be reversed on interchanging two particles. The operator 
which does this is 0. In the one-dimensional irreducible representations, only Ts, r6, r7 
and Ts have character - 1; so of the one-dimensional representations these are the only 
four relevant ones. Coming now to the two-dimensional irreducible representations the 
following argument shows that they are irrelevant. With any chosen two-dimensional 
representation it is possible to choose the basis pair so that the matrix of 0 is diagonal. 
Its diagonal elements are therefore 1 and - 1. The member of the pair which goes with 
1 is invariant under a ,  whereas the member with -1 reverses. However, since the 
representation is irreducible, it must be possible to choose elements of the group which 
admix the basis states, and these are neither invariant nor reversed by a. So the states 
in a two-dimensional representation are not all reversed by aand  therefore do not satisfy 
the antisymmetry requirement. 

3. Special case 

It is now convenient to examine once more the model used in I, which is a special case 
of the Hamiltonian obtained by choosing the parameters in it so that Wand Vare absent 
and U describes a potential which is everywhere large except when 4) = 2n/3.  New 
variables 

x= (91 - C p 2 > / f l  

y =  (v1 + v2 - 2 v 3 ) / 6  

z= (v1 + 4)2  + v3) / f i  

and 

are introduced, and the Hamiltonian becomes 

H E  (-)i2/2mor3(aZ/aX2 + a 2 / a r 2  + a 2 / a 2 2 )  

+ U ( ~ / z x > + U u ( ~ Y - ~ x ) + U ( - ~ ~ Y - ~ ~ ~ .  
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It separates into 

where 
HZ +Xxr 

HZ = (-h2/2mor(3)(a2/az2) 
and 
fix,  = ( - h 2 / 2 m o r ~ ) ( a 2 / d X 2  + a 2 / a Y 2 )  

+ U ( V / 2 x )  + U(V/TY - ax)  + U ( - V $ Y  - V / a X ) .  

U ( V / z x )  + U(V/TY - ax) + U(-V2Y  - V X X )  

The eigenstates of H Z  are of the form exp(iAZ). Those of H are found by examining the 
form of 

in the ( X ,  Y )  plane, where it is found that there are deep minima at six points which 
lie on a hexagon, and which are equivalent to a lattice of points because the whole 
Hamiltonian is invariant under the increase in any q by a multiple of 2 n .  If the U 
potential is supposed to be a delta function, it can be assumed that the eigenstates of 
H,, are highly localised in these wells and each will be orthogonal to the other five. 
This assumption was made in I, although it was also pointed out that, if they are 
not orthogonal, then group theoretical arguments can be used to obtain six mutually 
orthogonal states. It is this idea that we now pursue, except that in general it is necessary 
to consider 12 states. Under the symmetry elements of the group, as applied to Hxu, the 
six states corresponding to the six minima in the ( X ,  Y) plane give a reducible rep- 
resentation with the characters, in the order of the classes, being 6 0 0 0 0 2 6 0 0 0 0 2.  
It is, however, not the properties of H,, which are of interest, but those of H ,  and to 
study these it is necessary to multiply the states of Hx, by those of H Z .  For the case when 
A is zero this is simply a numerical multiple; so the above characters are the appropriate 
ones. They give rise to the representations rl + r6 + T9 + Tlo. However, when A is non- 
zero, each state of Hxyis multiplied by either exp(iAZ) or by exp( -iAZ), which doubles 
the number of states and produces the character sequence 12 0 0 0 0 0 12 0 0 0 0 0 0, 
which is equivalent to rl + I-2 + Ts + r6 + 2I-9 + 2&,,. It is then necessary to take the 
spin into account, and with three spins of a there are eight possible spin states, which 
give the character sequence 8 2 4 0 0 0 -8 -2 -4 0 0 0, or 2 r 3  + 2 r 4  + rll + r12. 
Alternatively, the states with total spin +2 give the sequence 4 4 4 0 0 0 -4 -4 -4 0 0 0, 
or 2 r ,  + 2 r 4 ,  and the two families with spin t give the sequence rll + r12. To obtain the 
overall set of irreducible representations the irreducible representations for the orbital 
states must be multiplied by those for the spin states and reduced to irreducible form. 
In so doing, only those of r5, r6, r7 and Ts type need be retained, for these are the only 
ones of physical importance. The final results are that with A = 0 and I = P the states 
transform as 2 r 7  + 2r,. With A = 0 and I = 4 the states transform as 2 r ,  + 2r,. With 
A # 0 and I = 4 the states transform as 4r7 + 4r,, and with A # 0 and I = 4 the states 
transform as 4r, + 4r,. 

With the delta function for U the lowest states will have A = 0 and the six orbital 
states can be combined with the I = 4 spin manifold to give four states, transforming as 
2(r7  + r8), but r7 and T, are conjugate representations and so can be expected to have 
the same energies. Also there is higher symmetry in the spin space than has been assumed 
in the symmetry group used, because the spin is not coupled to the orbital variables; so 
the four states are actually degenerate and form a spin quartet. This particular level 
can be described as 4r6, for all the spin parts are symmetric under LT and the overall 
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antisymmetry is entirely due to an orbital part of r6 symmetry. Similarly the six orbital 
states can, alternatively, be combined with the I = 1 spin manifolds, of which there are 
two. The result, 2(r7 + I?&, is again a pair of conjugate irreducible representations. A 
r7 will always be degenerate with a Ts, because they are conjugate representations, but 
there is no apriori reason why one (r7, r,) pair should be degenerate with another such 
pair. However, in the present example, with the delta function for U ,  thiscan be expected 
to occur, and indeed it can be expected that they will coincide in energy with the quartet. 
This is the point which was overlooked in I ,  that in arriving at the conclusion that there 
would be a 4A and a ‘doublet E’ (using the incorrect description) it should also have been 
found that they would not be separated in energy. The fact that they are, experimentally, 
implies that something is wrong with the Hamiltonian, and the obvious correction is to 
use a modified U .  In fact the experimental evidence appears to be that the splitting (or 
splittings?) of the ground states are more determined by the hindering potential than by 
the internal interaction of the methyl group; so it would seem preferable to include Vas 
well. 

4. General model 

Once V is included, the Hamiltonian no longer separates into an H ,  and an H,, part 
and the determination of the eigenstates and eigenvalues becomes an even more difficult 
problem. However, the symmetry of His  unaltered; so, provided that any extra splittings 
are small, the low-lying energy levels should be spanned by the same irreducible rep- 
resentations as found for the special case. Thus all that should happen is that the energy 
levels and states will change retaining any basic degeneracies. It may be noted that all 
the representations of the special case are of the type r7 + Ts, where the two have been 
associated because they are conjugate representations and so must remain degenerate. 
This degeneracy can also be regarded as an example of Kramers’ degeneracy, an essential 
degeneracy associated with an odd number of particles with spin 4. However, with W 
omitted, there is nothing to couple spins with orbits; so there must be more degeneracy 
than the above for the states with I = $. The upshot must be that the low-lying levels 
consist of two separated spin doublets and a spin quartet, with similar conclusions for 
the excited levels. This conclusion has been reached by symmetry arguments, using a V 
such that V ( q )  = V(-q ) .  All possible degeneracies have now been lifted; so adding 
another term to V of odd symmetry can have no further effect on the degeneracies. In 
fact the only remaining question is can the spin quartet be split by an interaction which 
couples spin and orbits together? W is such an interaction. Also from the form of (2) it 
is apparent that in the spin space the operators in it transform like second-rank tensors 
and they cannot split spin doublets, either because D,jz X D l p  = D o  + D ,  does not 
contain D 2 ,  or from Kramers’ theorem. They can, however, split a spin quartet, as is 
seen because 

0 3 1 2  X D3/2 = Do + D 1 +  0 2  + 0 3  

contains D 2 ,  or by using equivalent operators. The only possible reservation to this can 
arise because the reduced matrix element depends on the expectation value of the orbital 
part of W taken over the orbital wavefunction. There is no reason to suppose that this is 
zero. 
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5. Discussion 

The use of the symmetry properties of a general model of the motion of hindered methyl 
rotation has shown that far from 4A and 2E being a correct description of the low-lying 
levels it is much more likely that there are four low-lying energy levels each with twofold 
degeneracy. The I = i is split by the dipolar interaction and the two I = 4 levels should 
not have been described as 'E in the first place. In fact all the levels should be regarded 
as Kramers' degenerate levels, or given the description r7 + Ts. Once this is realised, it 
seems hardly necessary to go through a detailed theory for a glance at the character table 
(table 1) shows all that is really needed. There are only four irreducible representations 
which give antisymmetric many-particle states-r5, r6, r7 and rs-and only two of these 
produce twofold degeneracy, as required by Kramers' theorem. These are r7 and Ts. 
No other degeneracy is to be expected except in special cases where there is more 
symmetry. 

As an illustration of the effect of higher symmetry it is of interest to consider the case 
when the parameters in H are chosen so that U and Ware zero. The particles then move 
independently. The lowest single-particle level can be expected to be similar to the J = 
0 state of a free rotator and the first excited states, instead of being doubly degenerate 
as is the free rotator level, with J = 1, will be split by the potential V ,  unless it has 
threefold symmetry. The lowest states for three particles will have two spin-paired 
protons in J = 0, with the remaining proton in one or other of the split J = 1 states. This 
will produce two closely spaced doublet levels as the ground states. However, if V has 
threefold symmetry, they will coincide in energy. The quartet state is produced by 
putting a proton in each of J = 0, +1 and -1, with their spins parallel. 

It will have been noticed that no specific reference has been made to the experimental 
position, except that the hindering seems to cause splittings. There are several reasons 
why the experiments give little guidance. It is not easy to determine the low-lying energy 
spectrum and to establish the nature of their states, primarily because of selection rule 
difficulties. So the techniques which have been employed are, for the most part, quite 
complicated in nature, and there is then the question of how to interpret them. In many 
cases this has been done using, as a framework, the 4A and 'E picture, which is probably 
incorrect (see Wurger (1989), Heidemann et a1 (1989), Vuorimaki and Punkkinnen 
(1989) and Horsewill and Aibout (1989), which are good reference sources for work 
using this scheme). We are thus unable to claim that experiment supports the conclusions 
which follow from our analysis. A further complication arises because the experiments 
seem to show that, in any case, the splittings are temperature dependent, and there is 
no way in which such an effect can arise in the context of the present model. So while 
our model would seem to be an improvement in so far as it replaces a commonly used 
model it is still inadequate. It probably needs extension along the lines introduced by 
Hewson (1982) and Whittall and Gehring (1987). 

Finally it is perhaps of interest to see how the 4A, *E notation can arise. If three 
protons are placed at the corners of an equilateral triangle it may be assumed that they 
occupy orbitals qA, q B  and qc, which transform into one another under rotations of the 
triangle. With these three orbitals, eight Slater determinantal functions can be formed, 
for at each site there are two possible spin orientations. The Dirac (1947) treatment can 
be used to show that their energy levels can be obtained from an effective Hamiltonian 

J(Z' 1 2  + 12 + 13 . Z1). 
This Hamiltonian is invariant under interchanges of the spin labels and its eigenstates 
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can be given the labelling ‘A and 2E. If, however, the triangle is distorted, Heff takes the 
form 

J12z1 e P + J 2 3 ~ 2  - z3 + J 3 1 ~ 3  . z’. 
The symmetry for interchanges is reduced, if not eliminated, and the 2E is split into two 
spin doublets. The antisymmetric nature of the wavefunctions remains unaltered. It 
seems that in a number of papers it is assumed that the antisymmetry under interchanges 
of particles is equivalent to interchanges of sites, and that this in turn has led to the 
assumption that they each appear to be in a hindering potential of threefold symmetry. 
Neither assumption is correct, in general. Rather it appears that the hindering potential 
produces a distortion of the equilateral triangle of protons so that there are, in general, 
two separated spin-4 doublets and, in the absence of spin-orbit coupling, a quartet. The 
latter will be split by the dipolar interaction; so the low-lying levels can be expected to 
consist of four Kramers’ doublets. 
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